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The scaling properties of self-avoiding walks on ad-dimensional diluted lattice at the percolation threshold
are analyzed by a field-theoretical renormalization group approach. To this end we reconsider the model of Y.
Meir and A. B. Harris[Phys. Rev. Lett.63, 2819(1989)] and argue that via renormalization its multifractal
properties are directly accessible. While the former first order perturbation did not agree with the results of
other methods our analytic result gives an accurate description of the available MC and exact enumeration data
in a wide range of dimensions 2ødø6.
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Polymers and percolation clusters are among the most fre-
quently encountered examples of fractals in condensed mat-
ter physics[1–3]. They have been studied extensively since
the mid 70’s but important questions remain open, in particu-
lar the long-standing discrepancy between the field-
theoretical and numerical results for the scaling of a self-
avoiding walk(SAW) on a percolation cluster. The latter is at
the heart of the geometrical interpretation of thermal critical
phenomena[4]. In our special case it is furthermore con-
nected with the appearance of multifractality in field theo-
ries. The purpose of this paper is twofold: to resolve the
discrepancy between the field-theoretical and numerical re-
sults and to contribute a field-theoretical framework for the
multifractality recently discussed for this problem[13,20].

When a long polymer chain is immersed in a good solvent
its mean-square end-to-end distanceR2 scales with the
monomer numberN as:

R2̄ , N2nSAW, N → ` s1d

with the exponentnSAWsdd which depends on the(Euclidean)
space dimensiond only. This scaling of polymers(1) is per-
fectly described by the SAW on aregular d-dimensional lat-
tice [1] and the fractal dimension of a polymer chain readily
follows: dSAW=1/nSAW. For space dimensionsd above the
upper critical dimensiondup=4 the scaling exponent be-
comes trivial: nSAWsd.4d=1/2, whereas ford,dup the
non-trivial dependence ond is described, e.g., by the phe-
nomenological Flory formula[1] nSAW=3/sd+2d. This
found its further support by the renormalization group(RG)
«̃=4−d-expansion known currently to the high orders[5]:
nSAW=1/2+«̃ /16+15«̃2/512+¯.

When a SAW resides on adisordered(quenched diluted)
lattice–such a situation might be experimentally realized

studying a polymer solution in a porous medium, but is of its
own interest as well–the asymptotic scaling behavior is a
more subtle matter[6–8]. Numerous MC simulations[9–14]
and exact enumeration studies[15–21], which date back to
the early 1980s[8], lead to the conclusion that there are the
following regimes for the scaling of a SAW on a disordered
lattice: (i) weak disorder, when the concentrationp of bonds
allowed for the random walker is higher than the percolation
concentrationpPC and (ii ) strong disorder, directly atp
=pPC. By further diluting the lattice top,pPC no macro-
scopically connected cluster, “percolation cluster,” remains
and the lattice becomes disconnected. In regime(i) the scal-
ing law (1) is valid with the same exponentnSAW for the
diluted lattice independent ofp, whereas in case(ii ) the scal-
ing law (1) holds with a new exponentnpÞnSAW. A hint to
the physical understanding of these phenomena is given by
the fact that weak disorder does not change the dimension of
a lattice visited by a random walker, whereas the percolation
cluster itself is a fractal with fractal dimension dependent on
d: dPCsdd=d−bPC/nPC, wherebPC andnPC are familiar per-
colation exponents[2]. In this way, nSAWsdd must change
along with the dimensiondPC of the(fractal) lattice on which
the walk resides. A modified Flory formula[9] for the expo-
nent of a SAW on the percolation clusternp=3/sdPC+2d
along with results of similar theoretical studies[22–29] gives
numbers in astonishing agreement with the data observed
(see Table I). Sincedup=6 for percolation[2], the exponent
npsdù6d=1/2 [33].

Although the Flory-like theories[22–29] offer good ap-
proximations fornpsdd in a wide range ofd, even more as-
tonishing is the fact that up to now there do not exist any
satisfactory theoretical estimates fornpsdd based on a theory,
which takes into account non-Markovian properties of the
SAW, a task which was completed for regular lattices in the
mid-1970s[1]. Existing real-space RG studies[15,22,30,34]
give satisfactory estimates ford=2, whereas the field-
theoretical approaches aimed to describe the situation at
higher dimensions lead to contradictory conclusions. In par-
ticular, the field theory developed in Ref.[15] supported
dup=6 and presented a calculation ofnp in the first order of
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«=6−d. However the numerical estimates obtained from this
result are in poor agreement with numbers observed by other
means, leading in particular to the surprising estimatenp
.nSAW in d=3 (see Table I). In turn, Ref.[35] even ques-
tioned the renormalizability of this field theory and sug-
gested another theory withdup=4 which is obviously dis-
proved by computer simulations and exact enumerations at
dimensionsd=4,5 [14,15].

There is another important reason why the scaling of a
SAW on a percolation cluster calls for further theoretical
study. As it became clear now, higher-order correlations of a
fractal object at another fractal lead to multifractality[36].
Recently studied examples of multifractal phenomena are
found in such different fields as diffusion in the vicinity of an
absorbing polymer[37], random resistor networks[38],
quantum gravity[39]. A SAW on a percolation cluster is a
good candidate to possess multifractal behavior. While indi-
cations for such a behavior are found in computer simula-
tions [20], it is implicit and quantitatively described by our
RG scheme.

Let us consider a diluted lattice with sitesxi in terms of
variablespij =0,1 that indicate whether a given bond be-
tween the sitesxi and x j is present or not. To describe the

critical properties of SAWs on this lattice following the idea
of de Gennes[1] we introducem-component spin variables
Sasxid, a=1, . . . ,m, and evaluate the theory form=0. To
allow for the averaging over thequencheddisorder the spins
aren-fold replicated which gives for the Hamiltonian:

e−HS =KexpH−
K

2o
ki,jl

pij o
a=1

m

o
b=1

n

Sa
bsxidSa

bsx jdJL
p

s2d

where we sum over the nearest neighborsi, j and denote by
k¯lp the average over the random variablespij which take
the value 1 and 0 with probabilitiesp and s1−pd, respec-
tively, andK is an interaction parameter. In the following we
will work with a field theoretical representation of the effec-
tive Hamiltonian defined in(2). This is achieved[15] via a
Stratonovich-Hubbard transformation to tensor fieldscksxd
with componentsck;b1,. . .,bk

a1,. . .,ak sxd conjugated to the product
P j=1

k Sa j

b jsxd of k components of the replicated spin with
b1, ¯ ,bk. This results in the effective Hamiltonian up to
orderc3 [15]:

Hc =
1

2
E ddqo

k

srk + q2dcksqd:cks− qd +
w

6
E ddxc3sxd,

s3d

wherecksqd is the Fourier transform ofcksxd, w is the cou-
pling constant, and the inner product reads:

cksqd:cks− qd = o
haij

o
hbij

uck;b1,. . .,bk

a1,. . .,ak sqdu2,

and c3sxd is a symbolic notation for a product of threeck

fields. Only those cubic termsc3 are allowed for which all
pairssai ,bid appear exactly twice. A second condition on the
diagrammatic contributions to perturbation theory can be de-
rived from the de Gennes limitm=0, namely, if any index
sa ,bd appears only on the internal propagator of a diagram,
then its contribution vanishes.

We note the unusual dependence of “masses”rk on k. This
is reminiscent of the fact that in them=0 limit the theory(2)
has a multitude of critical points in then=0 replica limit
contrary to them.0 cases[15,40]. This has impact on the
renormalization of the theory(3) as we will show in the
following.

We choose to calculate the critical properties of the theory
by analyzing its vertex functions, in particularGs2dsqd,
Gs3dshqjd, andGs2,1dshqjd where the latter includes an insertion
of the c :c operator. Each of theseG-functions will depend
on the family of masseshrkj. The Feynman graphs of the
contributions to the two-point vertex functionGs2dsqd in the
two lowest orders are shown in Fig. 1. The contributions to

TABLE I. The exponentnp for a SAW on a percolation cluster.
FL: Flory-like theories, EE: exact enumerations, RS, RG: real-space
and field-theoretic RG. The first line showsnSAW for SAW on the
regular lattice(d=2 [31], d=3 [32]).

d 2 3 4 5 6

nSAW 3/4 0.5882(11) 1/2 1/2 1/2

FL, [22] 0.778 0.662 0.593 0.543 1/2

[23] 0.69(1) 0.57(2) 0.49(3) 1/2

[24] 0.70(3) 0.63 0.56 1/2

[25] 0.770 0.656 0.57 0.52 1/2

[26] 0.76 0.65 0.58 1/2

[27] 0.75–0.76 0.64–0.66 0.57–0.59 0.55–0.57 1/2

[28] 0.77 0.66 0.62 0.56 1/2

MC, [10] .nSAW 0.612(10)

[11] .nSAW 0.605(10)

[12] 0.77(1)

[13] 0.783(3)

[14] 0.62–0.63 0.56–0.57

EE, [15] 0.76(8) 0.67(4) 0.63(2) 0.54(2)

[16] 0.81(3)

[16] 0.745(10) 0.635(10)

[17] 0.65(1)

[18] 0.745(20) 0.640(15)

[19] 0.770(5) 0.660(5)

[20] 0.778(15) 0.66(1)

[20] 0.787(10) 0.662(6)

RS, [30] 0.767

[22] 0.778 0.724

RG, [15] 0.595 0.571 0.548 0.524 1/2

(10) 0.785 0.678 0.595 0.536 1/2

FIG. 1. The Feynman graphs of the vertex functionGs2dsqd in
the two lowest orders.
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Gs2,1d are found from this by placing an insertion on each of
the inner propagator lines. These integrals are evaluated then
in dimensional regularization in dimensiond=6−« and
minimal subtraction[41] using a Laurent-expansion in«.
Usually the renormalization of the vertex functions is defined
in terms ofZ-factors in such a way that the productsZcGs2d,
ZwGs3d, Zc2Gs2,1d are free of«-poles. However, the insertion
of the c :c-operator together with thek-dependence of the
massesrk leads to the following renormalization procedure.
The vertex functionGs2,1d even when evaluated at zero mass
remainsk-dependent:

Gs2,1d = G0
s2,1d + kG1

s2,1d + k2G2
s2,1d + ¯ s4d

and it cannot be renormalized by one multiplicativeZ-factor.
The essential feature of this expansion is that each term
shows a different scaling behavior. In this way the multitude
of critical points recognized already by Derrida[40] and
Meir and Harris[15] manifests itself in our present formal-
ism and leads to aspectrum of exponents. Instead of a single
Z-factor Zc2 a whole family of factorsZc:c

sid is necessary to
renormalize allGi

s2,1d in (4). This allows one to define theb-
andh -functions

bswd = k
d

dk
ln Zw, hswd = k

d

dk
ln Zc, s5d

that describe the RG-flows with respect to the rescaling pa-
rameterk and are the same as for thec3 Potts model[42].
Furthermore,

hc:c
sid swd = k

d

dk
ln Zc:c

sid s6d

govern the anomalous scaling of the corresponding functions
Gi

s2,1d.
The explicit calculations proceed as follows:(i) One starts

with the vertex functionGck

s2d corresponding to the propagator
of the fieldck. (ii ) For the masses one inserts the expansion
rk=mo j=0

` ujk
j. (iii ) The insertion ofc :c is defined by the

derivative s] /]mdGck

s2d evaluated at zero mass form=0. (iv)
Performing the summation over the replica indices the con-
tributions to the differentGi

s2,1d are generated by rearranging
the expansion ink. The requirement of multiplicative renor-
malization for eachGi

s2,1d fixes the coefficientsuj in the ex-
pansion forrk.

Following this procedure we obtain«=6−d expansions
for the spectrum of exponentshc:c

sid at the stable fixed point
w* with bsw*d=0:

hc:c
s0d = − 2«/7 − 167«2/24, s7d

hc:c
s1d = − «/7 − 604«2/9261, s8d

hc:c
s2d = − 3«/14 − 113443«2/1926288. s9d

Substituting(7) and(8) into 1/nsid=2−h+hc:c
sid together with

the known result[42] h=−« /21−206«2/213 we recover

ns0d;nPC [42] and extend the first-order expression[15] for
np by

ns1d ; np = 1/2 +«/42 + 110«2/213. s10d

Equation(10) presents our first main result, the implication
of which we discuss below. The second outcome of our
analysis is the higher spectrum of exponents(6) which quan-
titatively describes the multifractality of the problem and

concerns thelth momentskN̄lsx1,x2dlp of the mean number

N̄sx1,x2d of steps of SAWs between the sitesx1 andx2 [15]

which scale askN̄lsx1,x2dlp,ux1−x2ul/n
sld

[43]. Note, how-
ever, that the higher moments of the end-to-end distanceR2l,
for which no multifractality was found in Ref.[20], have

nothing to do with the scaling ofN̄l [15]. Evaluating the
result fornp (10) by direct substitution of«=6−d one finds
nearly perfect correspondence with available MC and exact
enumeration results over the ranged=2, . . . ,5, see Table I.
This presents aqualitative improvement over the linear re-
sult as seen in Fig. 2 where we also show that the result is in
between the limits given by the shortest and longest SAWs
on percolation cluster[45].

A rather peculiar finding is that results of the phenomeno-
logical Flory-like formulas evaluated using the fractal char-
acteristics of the percolation cluster are numerically very
close to our result in the same region of dimensions. The
ambiguity [19] in defining a Flory-like scheme however
leads to the different results in Table I.

Since thec3 theory as applied to the present problem has
the upper critical dimensiondup=6 non-trivial scaling fol-
lows for dimensionsd=4,5, which is out of reach of the
approach of Ref.[35] relying on af4-theory withdup=4 and
thus trivial scaling at and aboved=4.

From the physical point of view, our result for the expo-
nentnp together with the data of exact enumeration(EE) and
Flory-like theories(see Table I) predicts a swelling of a poly-
mer coil on the percolation cluster with respect to the pure
lattice: np.nSAW for d=2−5. Up to now,this phenomenon
has clearly been observed only in MC simulations ford=2

FIG. 2. The correlation exponentnp. Bold line: (10), thin line:
one-loop result[15], closed boxes: Flory resultnp=3/sdPC+2d with
dPC from [44]. Exponents for the shortest and longest SAW on
percolation cluster[45] are shown by dotted lines.
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[13]. Although simulations ond=3 percolation clusters have
been claimed to show this effect[9–11,14], these studies
were subsequently criticized for using inappropriate data
analysis[10,16,21] and for lack of accuracy. Atd=3 our
formula (10) predicts a 13% increase ofnp with respect to
nSAW which is larger than atd=2 (5%) and should be more
easily observed by current state-of-art simulations. Given
that even atd=2 we are in nice agreement with MC and EE
data and the reliability of the perturbative RG results

increases withd, this number calls for verification in MC
experiments of similar accuracy.
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