RAPID COMMUNICATIONS

Where two fractals meet: The scaling of a self-avoiding walk on a percolation cluster
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The scaling properties of self-avoiding walks od-dimensional diluted lattice at the percolation threshold
are analyzed by a field-theoretical renormalization group approach. To this end we reconsider the model of Y.
Meir and A. B. Harris[Phys. Rev. Lett.63, 2819(1989] and argue that via renormalization its multifractal
properties are directly accessible. While the former first order perturbation did not agree with the results of
other methods our analytic result gives an accurate description of the available MC and exact enumeration data
in a wide range of dimensions2d<6.
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Polymers and percolation clusters are among the most frestudying a polymer solution in a porous medium, but is of its
guently encountered examples of fractals in condensed mapwn interest as well-the asymptotic scaling behavior is a
ter physics[1-3]. They have been studied extensively sincemore subtle mattei6—8. Numerous MC simulationg9—-14
the mid 70’s but important questions remain open, in particuand exact enumeration studigks-21, which date back to
lar the long-standing discrepancy between the fieldthe early 1980¢8], lead to the conclusion that there are the
theoretical and numerical results for the scaling of a selffollowing regimes for the scaling of a SAW on a disordered
avoiding walk(SAW) on a percolation cluster. The latter is at lattice: (i) weak disorder, when the concentratipof bonds
the heart of the geometrical interpretation of thermal critical@llowed for the random walker is higher than the percolation
phenomend4]. In our special case it is furthermore con- concentrationppc and (i) strong disorder, directly ap
nected with the appearance of multifractality in field theo-=Ppc. By further diluting the lattice top<ppc no macro-
ries. The purpose of this paper is twofold: to resolve thescopically connected cluster, “percolation cluster,” remains
discrepancy between the field-theoretical and numerical reand the lattice becomes disconnected. In regimehe scal-
sults and to contribute a field-theoretical framework for theing law (1) is valid with the same exponenisay for the
multifractality recently discussed for this problditB,2Q. diluted lattice independent @f, whereas in casgi) the scal-

When a long polymer chain is immersed in a good solvening law (1) holds with a new exponent, # vsaw. A hint to
its mean-square end-to-end distanB® scales with the the physical understanding of these phenomena is given by

monomer numbeN as: the fact that weak disorder does not change the dimension of
_ a lattice visited by a random walker, whereas the percolation
R? ~ N2"saw, N — oo (1)  cluster itself is a fractal with fractal dimension dependent on

d: dp(d)=d-Bpc/ vpc, Where Bpc and vpc are familiar per-
colation exponent$2]. In this way, vsaw(d) must change
along with the dimensiodp of the (fractal) lattice on which
the walk resides. A modified Flory formu[&] for the expo-
nent of a SAW on the percolation clustef=3/(dpc+2)
along with results of similar theoretical studig?—29 gives

with the exponenigay(d) which depends on thgEuclidean
space dimensiod only. This scaling of polymergl) is per-
fectly described by the SAW onregular d-dimensional lat-
tice [1] and the fractal dimension of a polymer chain readily
follows: dsaw=1/vgaw. FoOr space dimensiorns above the

upper cr|_t|c_:aI. dlmenS|ord£p:4 the scaling exponent be- numbers in astonishing agreement with the data observed
comes .t”V'aI' VSAW(d>4)_.1/2’ Whgreas ford<d,, the (see Table)l Sinced,,=6 for percolation[2], the exponent
non-trivial dependence od is described, e.g., by the phe- (d=6)=1/2[33].

nomenological Flory formula[l] vsaw=3/(d+2). This ’ Although the Flory-like theorie§22-29 offer good ap-
found its further support by the renormalization grdiR®s) proximations forw,(d) in a wide range ofl, even more as-

e=4-d-expansion known currently to the high ordefs: tonishing is the fact that up to now there do not exist any

veaw=1/2+2/16+1%%/512+ --. satisfactor : :
. . . y theoretical estimates fgy(d) based on a theory,
When a SAW resides on disordered(quenched diluted which takes into account non-Markovian properties of the

lattice-such a situation might be experimentally reaIiZ(EdSAW, a task which was completed for regular lattices in the
mid-1970s[1]. Existing real-space RG studigs5,22,30,3%
give satisfactory estimates fod=2, whereas the field-

*Email address: ferber@physik.uni-freiburg.de theoretical approaches aimed to describe the situation at
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TABLE I. The exponenty, for a SAW on a percolation cluster.
FL: Flory-like theories, EE: exact enumerations, RS, RG: real-space
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and field-theoretic RG. The first line showgay for SAW on the
regular lattice(d=2 [31], d=3 [32)]).

ofs20)

d 2 3 4 5 6 FIG. 1. The Feynman graphs of the vertex functid®(q) in
the two lowest orders.
Vsaw 3/4 0588211  1/2 /2 1/2
FL, [22] 0.778 0.662 0.593 0.543  1/2 critical properties of SAWSs on this lattice following the idea
[23] 0.691) 0.572) 0.493) 1/2 of de Gennegl] we introducem-component spin variables
[24] 0.703) 0.63 0.56 172 SuX), @=1,...m, and evaluate the theory fan=0. To
[25] 0.770 0.656 0.57 0.52 172 allow for the e}veraging _over.trmjenchecﬁisord_er the spins
[26] 0.76 0.65 0.58 1, e n-fold replicated which gives for the Hamiltonian:
[27] 0.75-0.76 0.64-0.66 0.57-0.59 0.55-0.57 1/2 K m. n
(28] 0.77 0.66 0.62 056  1/2 ets={ exp) - EZ P2 2 S SEx) 2
MC,[10] =wveny 0.61210) AR ALS P
[11] ~psaw  0.60%10) where we sum over the nearest neighligisand denote by
[12] 0.771) (--+)p the average over the random variabfgswhich take
[13] 0.7833) the value 1 and O with probabilitieg and (1-p), respec-
[14] 0.62-0.63 056-057 ti\(ﬁ:ly, aEdK'th a? ilrgtet;]actio? pallrameter. I? Ihe folll?r\]/vingﬂwe
will work with a fie eoretical representation of the effec-

EE, [15] 0.768) 0.674) 0.632) 0.542) tive Hamiltonian defined in2). Thispis achieved15] via a
[16] 0.81(3) Stratonovich-Hubbard transformation to tensor fielg$x)
[16] 0.74510) 0.63310) with componentsys; % (x) conjugated to the product
[17] 0.651) H}‘zlsgi(x) of k components of the replicated spin with
[18] 0.74320)  0.64019) B1<--- <P This results in the effective Hamiltonian up to
[19] 0.77q5)  0.6605) order ¢° [15]:
[20] 0.77815  0.661)
20 078119 0.6620) o= f &' (r+ P(@):h(- ) + o f 2,
RS, [30] 0.767 2 k 6
[22] 0.778 0.724 (3)
(Ffl(;), " 8:?:: g:z;; 8:232 g:zgg ig where ¢, (q) is the Fourier transform of4(x), w is the cou-

£=6-d. However the numerical estimates obtained from this
result are in poor agreement with numbers observed by other

means, leading in particular to the surprising estimgje
=pgaw IN d=3 (see Table)L In turn, Ref.[35] even ques-

tioned the renormalizability of this field theory and sug

gested another theory witt,;=4 which is obviously dis- ¢ ¢ =na )
proved by computer simulations and exact enumerations Eg_tlagrammatlc contributions to perturbation theory can be de-
dimensionsd=4,5[14,15. ! !
There is another important reason why the scaling of 4/8) appears only on the internal propagator of a diagram,
SAW on a percolation cluster calls for further theoreticalthen its contribution vanishes. _
study. As it became clear now, higher-order correlations of a We note the unusual dependence of “massgsh k. This
fractal object at another fractal lead to multifractalj86]. - AC nthe 1€0I2)
Recently studied examples of multifractal phenomena arfas a multitude of critical points in the=0 replica limit
found in such different fields as diffusion in the vicinity of an contrary to them>0 caseq15,40. This has impact on the
absorbing polymer[37], random resistor network$38], |
guantum gravity{39]. A SAW on a percolation cluster is a following.

good candidate to possess multifractal behavior. While indi-

pling constant, and the inner product reads:

(@)= 0) = 2 2 i % (@),
{ai {Bi}

and A(x) is a symbolic notation for a product of threg

_fields. Only those cubic termg* are allowed for which all

pairs(«;, B;) appear exactly twice. A second condition on the

rived from the de Gennes limin=0, namely, if any index

is reminiscent of the fact that in the=0 limit the theory(2)

renormalization of the theory3) as we will show in the

We choose to calculate the critical properties of the theory

cations for such a behavior are found in computer simulaby3 analyzing 2|tf vertex functions, in particuldr®(q),
tions [20], it is implicit and quantitatively described by our I'®({a}), andI'®?({q}) where the latter includes an insertion

RG scheme.

Let us consider a diluted lattice with siteésin terms of € 1¢ : _ .
variablesp;=0,1 that indicate whether a given bond be- contributions to the two-point vertex functidft?(q) in the
tween the site; andx; is present or not. To describe the two lowest orders are shown in Fig. 1. The contributions to

of the ¢ s operator. Each of thedeé-functions will depend
on the family of masse¢r,}. The Feynman graphs of the
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I'@Y are found from this by placing an insertion on each of 08
the inner propagator lines. These integrals are evaluated then 075 |
in dimensional regularization in dimensiod=6-¢ and ’
minimal subtraction[41] using a Laurent-expansion is. 07 |
Usually the renormalization of the vertex functions is defined

in terms ofZ-factors in such a way that the produag™®, > 065
Z,I'®, Z,2,I'?Y are free ofe-poles. However, the insertion o6 L
of the : y-operator together with thk-dependence of the '
masses leads to the following renormalization procedure. 055 |
The vertex functiod®? even when evaluated at zero mass

remainsk-dependent: 05 L

red= 1‘*82'1) + kl-*(lZl) + k2r(22,1) e (4)
. . o FIG. 2. The correlation exponemt,. Bold line: (10), thin line:
and it cannot be renormalized by one multiplicat&+actor. one-loop resulf15], closed boxes: Flory result,=3/(dpc+2) with

The essential feature of this expansion is that each term,. from [44]. Exponents for the shortest and longest SAW on
shows a different scaling behavior. In this way the multitudepercolation clustef45] are shown by dotted lines.

of critical points recognized already by Derridd0] and
Meir and Harris[15] manifests itself in our present formal- L0 =

ism and leads to apectrum of exponenthstead of a single vec [42] and extend the first-order expressidrs] for

. Do b
Z-factor Z,» a whole family of factorszfl'ﬂ) » s necessary to Yo 0¥
renormalize aIIl"i(Z'l) in (4). This allows one to define thg-
and 7 -functions V(l) =Vp= 1/2 +e/42 + 11&2/213 (10)
B(w) = Kim Zw (W)= Kim Z,, (5)  Equation(10) presents our first main result, the implication
dx dk of which we discuss below. The second outcome of our

analysis is the higher spectrum of expond@jswhich quan-
at‘|tatively describes the multifractality of the problem and

concerns théth moments(ﬁ(xl,xz»p of the mean number

N(x4,X,) of steps of SAWs between the sitesandx, [15]
. d , . T 5]
7D W) = k—In Z0), (6)  which scale ag(N'(xl,xz)>p~|x1—x2|" [43]. Note, how-
dx ever, that the higher moments of the end-to-end dist&ige

. . ._for which no multifractality was found in Ref.20], have
govern the anomalous scaling of the corresponding functions . i , — ]
@ nothing to do with the scaling oN' [15]. Evaluating the

' The explicit calculations proceed as follows: One starts result for v, (10) by direct substltu_tlon OEZG_d one finds
with the vertex function™? corresponding to the propagator nearly perfect correspondence with available MC and exact
’ - e ) ~ enumeration results over the rande 2, ...,5, see Table I.
of the field 4. (ii) For the masses one inserts the expansiofrhjs presents gualitative improvement over the linear re-
M= K220 UK. (|||)2The insertion ofy: ¢ is defined by the gyt as seen in Fig. 2 where we also show that the result is in
derivative(ﬁ/ﬁu)l“ibk) evaluated at zero mass fa=0. (iv)  between the limits given by the shortest and longest SAWs
Performing the summation over the replica indices the conen percolation clustef45].
tributions to the different*" are generated by rearranging A rather peculiar finding is that results of the phenomeno-
the expansion irk. The requirement of multiplicative renor- logical Flory-like formulas evaluated using the fractal char-
malization for eacﬂ"i(z'l) fixes the coefficientss; in the ex- acteristics of the percolation cluster are numerically very
pansion forr,. close to our result in the same region of dimensions. The
Following this procedure we obtain=6-d expansions ambiguity [19] in defining a Flory-like scheme however

for the spectrum of exponents, , at the stable fixed point leads to the different results in Table I.
w" with B(w")=0: ' Since they? theory as applied to the present problem has

the upper critical dimension,,=6 non-trivial scaling fol-

ngl%z - 2¢/7 - 16%2/24, (7)  lows for dimensionsd=4,5, which is out of reach of the
approach of Ref[35] relying on a¢*-theory withd,,=4 and
thus trivial scaling at and abowi=4.

that describe the RG-flows with respect to the rescaling p
rameterx and are the same as for thfé Potts mode[42].
Furthermore,

D —_ 7= 2 4 ) .
7y =~ elT - 60479261, (8) From the physical point of view, our result for the expo-
nenty, together with the data of exact enumerati&t) and
7,% = —3¢/14 - 113443%/1926288. 9 Flory-like theorieqsee Table)lpredicts a swelling of a poly-

_ _ mer coil on the percolation cluster with respect to the pure
Substituting(7) and(8) into 1/vM=2-7+ 77('? together with  lattice: v,> vgay for d=2-5. Up to nowthis phenomenon
the known result[42] 7= el21-206:2/515 we recover has clearly been observed only in MC simulations der2
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[13]. Although simulations om=3 percolation clusters have increases withd, this number calls for verification in MC
been claimed to show this effe¢9—11,14, these studies experiments of similar accuracy.

were subsequently criticized for using inappropriate data

analysis[10,16,2] and for lack of accuracy. Atl=3 our We thank Guy Bonneau, Bertrand Delamotte, and Verena
formula (10) predicts a 13% increase of, with respect to Schulte-Frohlinde for enlightening comments. R.F. and
vsaw Which is larger than ati=2 (5%) and should be more Yu.H. thank the Austrian Fonds zur Férderung der wissen-
easily observed by current state-of-art simulations. Giverschaftlichen Forschung, project No. 16574-PHY which sup-
that even atd=2 we are in nice agreement with MC and EE ported in part this research. V.B. thanks Deutscher Akade-
data and the reliability of the perturbative RG resultsmischer Austauschdienst for support.
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